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Electrodynamics from a Metric 
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A metric is given that produces a space in which the geodesic equation is identical 
with the Lorentz equation of motion for a charged particle. The gravitational 
field equations in the same space indicate a geometric origin for the electromag- 
netic energy-momentum tensor. A comparison is made with Kaluza-Klein 
theories and it is determined that the present theory is distinct from them because 
it corresponds to a timelike, noncompact fifth dimension. Since the metric is 
velocity-dependent, it is actually a Finsler space rather than a Riemannian space 
metric. Its special form, however, allows computations to be done in terms of 
Riemannian geometry. 

1. T H E  E Q U A T I O N  O F  M O T I O N  

C o n s i d e r  a cha rged  test  par t ic le  moving  a long a pa th  in Minkowsk i  
space.  The pa th  p a r a m e t e r  is t aken  to be the p r o p e r  t ime ~'. The pos i t i on  
o f  the par t i c le  is given by  x ~ ( r )  and  the veloci ty  and  acce le ra t ion  are 
v , ~ =  d x ~ / d ~  " and  a ~ =  d v ~ / d ' r .  Take 

C 2 d,r 2 ~_ ~l~,,dx ~" d x  ~" 

where  the  s ignature  o f  the  metr ic  is (+1,  - 1 ,  - 1 ,  - 1 ) .  
W h e n  the par t ic le  is ac ted  on only  by  an e lec t romagne t i c  field f rom a 

po ten t ia l  A ~, assume the equa t ion  o f  mo t ion  is o f  the Lorentz  form 

a ~ : ( e / m c ) ~ 7 " ~ F , . x v  ~' (1) 

with F ~  = A~.. - A.,~. 

This pa th  is not  a geodes ic  in Minkowsk i  space.  It will be shown,  
however ,  that  the behav io r  o f  the par t ic le  can also be descr ibed  by  assuming  
it fol lows a geodes ic  in a space  with a met r ic  g.~ o f  a cer ta in  form. The 
e lec t romagne t i c  force then  results  f rom the connec t ion  p r o d u c e d  by  the 
new metr ic .  
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The metric g~,~ is imposed on the same coordinate system as the 
Minkowski metric. The introduction of a new metric is always possible for 
any differentiable manifold. This does not require a coordinate transforma- 
tion in either the active or the passive sense. As far as the particle is 
concerned, the new metric produces a change of scale along its path, which 
is characterized by a new path parameter  ~ with 

Then, for example, 

c 2 d~ 2 = ~,~ d x  ~" d x  ~ 

~ = d x "  / d~ = by  ~ (2) 

where b = d r / d ~  can be thought of as a scale function. 
Also, 

g?* = d ~ * /  d~ = q u b g - J  - V ~* d b /  d~ (3) 

The key to this work is the Ansatz for the form of g,,~: 

~,,,~ = rh,~ + kBuB~ (4) 

where k is a constant to be determined. The vector B~ will be related to 
the electromagnetic potential. 

This type of metric has appeared before in various contexts. For 
example, it looks like the 4-tensor part of a Kaluza-Klein metric. It is also 
a type of projection tensor (Schmutzer, 1983). It will be found to be similar 
to a form that Synge (1971) has discussed as representing a transparent 
medium. Moreover, a recent effort by Fontaine and Amiot (1983) is in the 
same general direction as the present one. 

The contravariant form must be 

g~*~ = rt ~'~ - k(a + k B 2 ) - ' B U B  ~ (5) 

where B 2= B ~ B L  T h e  vector B ~ is defined in the Minkowski space so its 
index is raised and lowered by 77. The necessary condition that determines 
the contravariant form is 

gg~g~ = 3~ (6) 

In Fontaine and Amiot (1983) the condition (6) is not satisfied. 
Now, considering 

c2 d~ 2 = g,,~v~v ~ d r  2 = [c2+ k (  B~v~)  2] d r  2- 

gives 

b = [1 + kc -2 (B~v~)2]  - ' / 2  (7) 
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Note that 

f,. = b[v.  + kB.(B~v~)]  
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so that ~5~g ~ = c 2. Also, 

db/  dr = b(db/  dr) = -b*kc-2(  B .v  '~) d(B,~v~')/ d'c 
The geodesic equation in the new metric is 

A computation of the Christoffel connection gives 

{ ~ } = � 8 9  ~] (9) 

where H,~ = B~,~ - B~,~. 
Using (3), (7), and (9) in (8) and dividing by b 2 results in 

a ~" - b2kc-2v~(B~,v ~' ) d(B,~v~)/d~'+ k(1 + k B 2 ) - l B " ( v  ~ dB~/d~r) 

+ k~"~Hr ~ = 0 (10) 

A useful simplification results from inserting 

v ~ dBJd~" = d (B~v~) /d~ ' -B~a  ~ 

in the third term of (10), multiplying the entire equation by B~,, solving for 
B~a ~, and substituting the result back in (10). 

The geodesic equation is then 

a~ + k [ B ~ - c - 2 ( B ~ v ~ ' ) v ' ] b  2 d(B,~v'~)/d'r+ k~?~'AH~A(B~v'~)v ~ = 0  (11) 

Now assume that B~. is related to the electromagnetic potential by a 
gauge, 

B~ = Ag +OA/Ox ~ ( 1 2 )  

Then H~,, = F~,~. 
It is easy to see that if the condition 

k(B~,v ~) = - e / m c  (13) 

is satisfied, then the geodesic equation is the same as (1), the Lorentz 
equation. 

The mutual consistency of conditions such as (12) and (13) has been 
discussed extensively in Fontaine and Amiot (1983). The simplest approach 
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is to exhibit a form 

B ,  = A ,  + hO , 

where O(x ~') is a function that satisfies v ' O ,  = 1. The relation H,~ = F.~ 
still holds due to the chain rule, h~ = (dh/dO)  0~. As pointed out in Fontaine 
and Amiot (1983), 0 can be defined as a simple path-dependent integral of 
the proper time along the particle trajectory. Then the variable h is given by 

h = - ( e / m c k )  - A , ~ v  '~ (14) 

To summarise this section: The metric of (4) gives a prescription for 
measuring distances that produces a geodesic identical with the Lorentz 
equation. 

Note that there:'has thus far been no restriction on the constant k. The 
identification of k will follow from the consideration of the field equations. 
It should be mentioned here that the same results as above are obtained if 
it is initially assumed that k is some function of the variables of the system. 

Also, essentially the same results as above could have been obtained 
using a general gravitational metric g.~ instead of ~1~. The metric rh,. is 
taken not only for simplicity, but because it is reasonable to ignore purely 
gravitational effects in the realm of this study. 

It is important to recognize now that the space being dealt with has a 
Finslerian form. This follows directly from the velocity dependence of the 
metric. 

Finsler spaces have been known for  a long time. The basic reference 
is still the book by Rund (1959). There has been only minimal interest in 
the past in applying these spaces to physics. 

Recently, though, the number of papers on Finsler geometry applied 
:to physics has been increasing. The interested reader should see, for example, 
the work of Tavakol and Van den Bergh (1986) and Aringazin and Asanov 
(1985) and references therein. 

The metric being considered here, while velocity-dependent, actually 
reduces to a Riemann space due to (13). This can easily be seen by looking 
at the Finsler metric function 

F ( x  ~ ' , v ' ) = ' -  ~, ~1/2 ,~-2  . ~1/2 tg~,v  v ) =~o r l~v  v ) 

The Finsler metric is 

f~l~ =�89 av~ 

But since b is taken to be a constant, then f~t~ = b - Z ~ ,  which is the 
Condition for the Finsler space to be Riemannian. So all of the present work 
is carried Out in terms of familiar Riemannian geometry. 
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2. THE FIELD EQUATIONS 

The Ricci tensor for the metric ~ will be computed from (9) according 
to standard methods. The result is 

1 2 - o c T - r ~  1 -/~A 

- �89 1 + kB 2 ) - ' n  ~A.G,B ~ ( B ,  BA.~. + B,B~.. 7 ) 

-�89 + kB2)-'g"~G,~B~ (&G~ + B~G~) 

+ �89 ~ (F.~.~B, + F~.~..B,) - ~ k(1 + kB 2)-' r I~'*B~,~ B..~ 

-k[�89 + kB2)- 'n  "~ - k(1 + kB2)- 2 B"  B;~ ]B~.~B~.. 

+�89 + kB2)- I~AB. ,a  (B~.. + B..~) 

+�89 + kB2)-'B~(F~,.,~ + F~ , , )  (15) 

The curvature scalar, R = ~ " R . , ,  is found to be 

R = - ~k2B2(1 + kB 2)-1 ~,~x~..F.~F,~" _ �89 

+ 2k(1 + kB2)-I~.~AB'IF.A.~ 

-k (1  + kB2)- '  g"~."Y ( B,.AB,., - B, .aB, . . )  

-- �89 1 q- k B  2 ) -2 ~l "~B'B ~'F,.F,a ( 1 6 )  

At this point notice that R.~ and R can be separated into terms of 
different order in the dimensionless magnitude kB 2. It will be shown a bit 
later that kB 2 is very large compared to unity, at least for a test particle 
with parameters comparable to those of an electron. So terms of different 
orders are grouped, making frequent use of (1 + kB2) - ~  (kB2) - ~ -  (kB2) -2. 

For example, to highest order, 

R = - �88 (17) 

The Einstein tensor. G,~ - R,~ -~g,:.R. can be written as 
_ _  1 2 - o , A  - r l *  1 - - a A  - r t *  G n : , - - 2 k  g g F~aF~,B,B.+skgn,g g F,~,Fa, 

_ �89  aF, ~ -2 .~a- . ,  - ~ k B  g g F~uFaeB,B , 
l_ --2 ,u,A a - 2 k B  ",1 F ~ B  (B,B~. ,+ B~.B~.,) 
1 -I~A +skg (F,a.,B.+F.~.~B.~) ~ --2-,, . kB g B F~a.,B,B~. 

1 4 ~,A a r +akB rl B B GuGaBnB , (18) 

retaining terms of the two highest orders. 
It is expected that the field equations for a particle in an electromagnetic 

field will be 

a n ,  = 8"B'KC 4 ( p 0 ~ n / ~ 3 , " [ -  T n ~ ' )  (19) 
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with K the gravitational constant and po the proper matter density. The 
electromagnetic energy tensor is 

Tn:r = ( 4 " B ' ) - I ( g = A F n x G ~  , l - -m~-~/3 +zgnvg g F~,F,~)  

The second and third terms of (18) compare exactly with 2Pn. if 

(20) 

So if (21) is accepted, then the electromagnetic energy tensor has appeared 
as part of the Einstein tensor. It is derived from the "geometry" as deter- 
mined by the metric. 

The Tn~ terms in (19) can be subtracted from both sides, leaving to 
highest order only 

Recalling (17), 

1 2 - a h - r ~ z  - ~ k  g g F ~ F , ~ B n B v - 2 1 r k p o ~ , ~  :, 

o r  

RBnBv = "n'poV, G 

Contracting this with v'Tv =' gives 

( e / m c k ) 2 R  = ~'pob-2c4 

( e /  mc)2 R = 16"n'K2pob-2 c 4 (23) 

An interesting point is that not only does the electromagnetic energy 
tensor part of the right-hand side of (19) appear in the curvature, but so 
does the matter term. Thus, one can say that everything in this theory is 
curvature. 

Now that k has been determined, the magnitude assumption can be 
checked by looking at 

b -2 = 1 + k c - 2 ( B o ,  v=)  2 = 1 +�88 -1 "-~ 1042 

Substituting this in (22) and making use of (23) yields 

kBnB~, = c-2~n~r (24) 

Since ~" = by" and ~.6~" = c 2, it can be inferred that the magnitude of 
~, is of the order of b - l v . .  Thus, kBnB ~, is of the same order of magnitude 
as b -2. The number 1042 is about what might be expected when comparing 
electromagnetic and gravitational effects in the neighborhood of an electron. 

(22) 

k = 4Kc-4 (21 ) 
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So a consideration of the field equations yields several useful results, 
including an identification of  the constant k, a "geometrization" of the 
energy-momentum tensor, and a relation between the matter energy density 
and the curvature scalar, which can be written as 

R = 4~re-2Kpo (25) 

This is not so startling when (17) is taken into account, producing 

4~po = c-2gn'~g~AF.y;~Fn~, 

For example, if the field F~,, is the self-field of the particle and the particle 
is taken to be in uniform motion, 

4~rpo = c-2F~'~F,~ 

This is a recognizable result. A recent appearance (in integral form) in the 
literature is in Scbwinger (1983). 

Finally, note that, due to (24), the metric can be written as 

This is the projection tensor form (Schmutzer, 1983), which also looks 
like the metric for a transparent medium (Synge, 1971). 

3. C O M P A R I S O N  W I T H  KALUZA-KLEIN FORM 

The line element for the metric can be written 

ds 2 = ~,~ dx  ~" dx  ~ = ( 71~,~ + kA~,A~ ) dx  ~ dx  ~ + 2khAn, dx  ~" dO + kh 2( dO ) 2 

This can be compared with the Kaluza-Klein form, 

ds 2-- ( ~I~,~ + fl2A~,A~) dx  ~" dx  ~ - 2 i r A , ,  dx  ~" d x S - (  dxS) 2 

It is readily seen that a fundamental difference between the present 
theory and Kaluza theories is that the fifth dimension here would be timelike 
rather than spacelike. 

The reason for the timelike fifth dimension is that part of the curvature 
derived from the metric is equated to the positive value of  the electromag- 
netic energy tensor, which is kept on the right-hand side of  the field 
equations. In Kaluza theories the electromagnetic part of the energy tensor 
is shifted from the right- to the left-hand side, where its negative value is 
equated to the curvature derived from the metric. The result here is a positive 
sign for k, which produces a 5-metric corresponding to a signature 
( + 1 , - 1 , - 1 , - 1 ,  +1). 
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An objection that has been raised to the use of  a timelike fifth dimension, 
and the reason for its avoidance in Kaluza-Klein theories [see Chyba (1985) 
and  references therein], is that causality would be violated by the closed 
timelike lines in a compact  dimension. The objection does not apply here, 
since the fifth dimension is not compact. 

It should be pointed out that the five-dimensional interpretation given 
in this section is not essential to the theory. All results have been derived 
and presented in the curved 4-sPace and can be interpreted in ordinary 
general relativistic space-time. 

4. D I S C U S S I O N  

The theory presented here establishes a correspondence between the 
electromagnetic field and the curvature of  4-space at a fundamental  level. 
It is a unified theory in the same sense as Kaluza theories in that electromag- 
netism is incorporated directly into the metric structure of  general relativity. 
It is not, however, totally unified since no common origin of  the gravitational 
and electromagnetic fields has been given. 

The present theory can be considered in a sense to be more unified 
than Kaluza theories. In Kaluza theories the matter density term remains 
alone on the right-hand side of the field equations and is not incorporated 
into the curvature derived from the metric. Here the matter density energy 
is included in the curvature. In a sense the field equations are reduced to 
a sort of  tautology with the same physical interpretation for both sides of  
the equat ions-- that  is, everything is curvature. 

Another interesting feature of  this theory is the dependence of the 
metric on the motion of the test particle. This is not as radical as it first 
appears,  since the test particle dependence is all in the gauge term. The 
usual physically meaningful quantities all involve only the gauge-indepen- 
dent field F ~ .  There may, though, be a way of  using ideas such as those 
of  Apsel (1979) to give a measurable significance to the gauge. 

The Finslerian nature of  the space considered here should be explored 
further. Finsler space is a logical realm for the inclusion of electromagnetism 
in a metric theory, since it is intrinsically velocity-dependent. As pointed 
out by Tavakol and Van den Bergh (1986), it seems to be a natural geometric 
framework for an extension of general relativity. The properties of  the 
present metric without the assumption (13) should be investigated. 

Finally, the formal correspondence of this work to a theory with a 
timelike, noncompact  fifth dimension indicates that it is fundamentally 
different from the usual theories of  this type. It may be fruitful to consider 
this as a guide to quantum field theories in the same spirit as the recent 
intensive use of  Kaluza-Klein theories. 
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